首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6248篇
  免费   518篇
  国内免费   372篇
  2024年   4篇
  2023年   429篇
  2022年   172篇
  2021年   247篇
  2020年   317篇
  2019年   235篇
  2018年   279篇
  2017年   236篇
  2016年   283篇
  2015年   343篇
  2014年   337篇
  2013年   500篇
  2012年   310篇
  2011年   330篇
  2010年   278篇
  2009年   356篇
  2008年   240篇
  2007年   267篇
  2006年   243篇
  2005年   196篇
  2004年   174篇
  2003年   144篇
  2002年   129篇
  2001年   111篇
  2000年   88篇
  1999年   110篇
  1998年   91篇
  1997年   67篇
  1996年   65篇
  1995年   75篇
  1994年   59篇
  1993年   63篇
  1992年   48篇
  1991年   48篇
  1990年   40篇
  1989年   32篇
  1988年   24篇
  1987年   24篇
  1986年   15篇
  1985年   18篇
  1984年   34篇
  1983年   9篇
  1982年   16篇
  1981年   16篇
  1980年   8篇
  1979年   10篇
  1978年   4篇
  1976年   5篇
  1974年   2篇
  1971年   2篇
排序方式: 共有7138条查询结果,搜索用时 31 毫秒
71.
《Process Biochemistry》2014,49(5):751-757
The biosynthesis of L-phenylalanine (Phe) is one of the most complicated amino acid synthesis pathways. In this study, the engineering of Phe producer was carried out to illustrate the effectiveness of systems level engineering: (1) inactivated glucose specific phosphoenolpyruvate-carbohydrate phosphotransferase (PTS) system by inactivation of crr to moderate the glucose uptake rate to reduce overflow metabolism; (2) genetic switch on or off the expression of phefbr, aroG15, ydiB, aroK, and tyrB to increase the supply of precursors; (3) employed a tyrA mutant strain to reduce carbon diversion and to result in non-growing cells; (4) enhanced the efflux of Phe by overexpressing yddG to shift equilibrium towards Phe synthesis and to release the feedback regulation in Phe synthesis. The mutants in PTS were firstly compared and a crr mutant was firstly screened. The mutant AroG15 was demonstrated to a thermostable mutant. The strains expressing yddG excreted Phe into the medium at higher rate and less intracellular Phe accumulated. By systems level engineering, an engineered Phe producer achieved 47.0 g/L Phe with a yield of 0.252 g/g which was the highest under the non-optimized fermentation condition.  相似文献   
72.
The thyroid is a bilobated endocrine gland localized at the base of the neck, producing the thyroid hormones T3, T4, and calcitonin. T3 and T4 are produced by differentiated thyrocytes, organized in closed spheres called follicles, while calcitonin is synthesized by C-cells, interspersed in between the follicles and a dense network of blood capillaries. Although adult thyroid architecture and functions have been extensively described and studied, the formation of the “angio-follicular” units, the distribution of C-cells in the parenchyma and the paracrine communications between epithelial and endothelial cells is far from being understood.This method describes the sequential steps of mouse embryonic thyroid anlagen dissection and its culture on semiporous filters or on microscopy plastic slides. Within a period of four days, this culture system faithfully recapitulates in vivo thyroid development. Indeed, (i) bilobation of the organ occurs (for e12.5 explants), (ii) thyrocytes precursors organize into follicles and polarize, (iii) thyrocytes and C-cells differentiate, and (iv) endothelial cells present in the microdissected tissue proliferate, migrate into the thyroid lobes, and closely associate with the epithelial cells, as they do in vivo.Thyroid tissues can be obtained from wild type, knockout or fluorescent transgenic embryos. Moreover, explants culture can be manipulated by addition of inhibitors, blocking antibodies, growth factors, or even cells or conditioned medium. Ex vivo development can be analyzed in real-time, or at any time of the culture by immunostaining and RT-qPCR.In conclusion, thyroid explant culture combined with downstream whole-mount or on sections imaging and gene expression profiling provides a powerful system for manipulating and studying morphogenetic and differentiation events of thyroid organogenesis.  相似文献   
73.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
74.
75.
The origin of nervous systems is a main theme in biology and its mechanisms are largely underlied by synaptic neurotransmission. One problem to explain synapse establishment is that synaptic orthologs are present in multiple aneural organisms. We questioned how the interactions among these elements evolved and to what extent it relates to our understanding of the nervous systems complexity. We identified the human neurotransmission gene network based on genes present in GABAergic, glutamatergic, serotonergic, dopaminergic, and cholinergic systems. The network comprises 321 human genes, 83 of which act exclusively in the nervous system. We reconstructed the evolutionary scenario of synapse emergence by looking for synaptic orthologs in 476 eukaryotes. The Human–Cnidaria common ancestor displayed a massive emergence of neuroexclusive genes, mainly ionotropic receptors, which might have been crucial to the evolution of synapses. Very few synaptic genes had their origin after the Human–Cnidaria common ancestor. We also identified a higher abundance of synaptic proteins in vertebrates, which suggests an increase in the synaptic network complexity of those organisms.  相似文献   
76.
《Molecular cell》2021,81(19):4091-4103.e9
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   
77.
Abstract

Bryophytes are excellent indicator organisms for monitoring environmental changes to which they could be more sensitive than vascular plants but our knowledge on their adaptation to alpine conditions is still very poor. Research programmes were set up to establish the ecological parameters for bryophyte distribution along the altitudinal gradient as well as for a better understanding of the population biology of alpine bryophytes.  相似文献   
78.
《Molecular cell》2021,81(21):4552-4567.e8
  1. Download : Download high-res image (282KB)
  2. Download : Download full-size image
  相似文献   
79.
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.  相似文献   
80.
Synthetic biology has the potential to contribute breakthrough innovations to the pursuit of new global health solutions. Wishing to harness the emerging tools of synthetic biology for the goals of global health, in 2011 the Bill & Melinda Gates Foundation put out a call for grant applications to “Apply Synthetic Biology to Global Health Challenges” under its “Grand Challenges Explorations” program. A highly diverse pool of over 700 applications was received. Proposed applications of synthetic biology to global health needs included interventions such as therapeutics, vaccines, and diagnostics, as well as strategies for biomanufacturing, and the design of tools and platforms that could further global health research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号